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Abstract. We study two expanded phases of Ge crystals, type-I (Ge46) and type-II (Ge136)
clathrates, using anab initio density functional planewave pseudopotential method. The equation
of state, electronic structure and vibrational modes have been determined. These expanded Ge
phases are shown to be only slightly higher in energy than the diamond phase (0.05 eV/atom),
and considerably lower in energy than the compressedβ-tin phase by about 0.14 eV/atom. The
electronic band-gaps of Ge clathrates are about 1.21 eV (type-I) and 0.75 eV (type-II) wider that
band-gaps in the diamond phase. We have determined lattice vibrational modes and the frequencies
of the Raman and infrared modes. The results of Ge clathrates are compared and contrasted with
those of Si clathrates, where experiments are more numerous.

1. Introduction

Carbon, silicon and germanium have a similar valence electron configuration containing two s
and two p electrons, and assemble in the diamond tetrahedrally bonded sp3 solid as their ground-
state crystal structure. Carbon is singular in that it takes on alternate forms with sp2-bonds
to produce graphite and icosahedral fullerene molecules. The icosahedral fullerene coalesce
through van der Waals interactions to form open cage-based solids. Silicon and germanium
too can form open cage-like solids involving icosahedra, but because of their inability to form
sp2-bonds, all cages are tightly joined with all atoms4-connectedto retain sp3-like bonding.
The class of structures found experimentally are referred to as clathrates, because of their
similarity to hydrate (ice) clathrates [1], which are H2O framework solids with encapsulated
guest impurities such as Cl2. In hydrate clathrates there are four hydrogen bonds for each H2O
molecule; two hydrogen bonds of the oxygen with two neighbouring hydrogen atoms, and one
hydrogen bond for each hydrogen atom with a neighbouring oxygen. This four-bonded motif
is repeated in silica, where SiO2 forms similar structures [2]. As early as 1965, scientists knew
that silicon and germanium were capable of forming clathrate frameworks in the presence
of guest metal atoms (such as Na and K) encapsulated into ‘silicon cages’ or ‘germanium
cages’ [3–8]. No one, to our knowledge, has successfully produced a clathrate with no guest
impurities. However, the guest fraction can, in some cases, be reduced to 1% or lower. The
details of the clathrate-I and -II structures are given in section 3.

Silicon clathrates have been the most studied expanded semiconductor phase—several
synthesis routes have been found and the structure analysed in detail. Semiconductor clathrate
research has had a great increase in activity in the last six years, partially because of their
similarities with fullerenes, but more importantly because of their expected new properties.
Adamset al [9] reported their theoretical study on Si clathrates using a local-orbital tight-
binding-like local density approximation (LDA) method. That study focused on pure silicon
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clathrates (i.e. the empty framework without metal guest atoms). They found that clathrate
framework is approximately 0.07 eV/atom higher than the ground diamond-state phase, and
that guest-free Si clathrates are semiconductors, whose band-gaps are about 0.7 eV wider than
that of diamond phase. Other calculations have been performed on silicon clathrates by several
theoretical groups [10–14].

The interest in semiconductor clathrates is not just in the semiconductor framework, but
also in the control of the properties offered by the guests occupying the cages within the
framework. The clathrate framework is open, and there are many possible guest atoms that
can be inserted into the ‘cages’ and consequently alter the properties of the composite systems.
This gives a material designer new ‘knobs’ by which the material properties can be tuned.
An example of this is the recent discovery of superconductivity in(Na, Ba)xSi46, reported
by Kawaji et al [15]. This novel discovery was unexpected since no superconductor had
previously been found in a covalent sp3 network. An earlier search for superconductivity was
unsuccessful [16], since it appears that the element Ba plays a key role.

Germanium clathrate composites have drawn less attention than their silicon counterparts.
A new motivation for their study has arisen because of their potential use as a thermoelectric
material. A good thermoelectric material must have a high Seebeck coefficientS, high
electrical conductivityσ , yet low thermal conductivityκ [17]. Currently, the bottleneck is to
simultaneous satisfy the last two conditions because it requires that the solids are ‘crystal-like’
in term of electrical conductivity, but ‘glass-like’ in term of thermal conductivity. To overcome
this dilemma, a new concept in designing thermoelectrics is to introduce ‘rattling’ vibrational
modes to significantly reduce the thermal conductivity while the electrical conductivity is
less effected [18]. Although the fundamental physics of these ‘rattling’ modes is not yet well
understood, this concept has been successful within the skutterudites [19, 20]. Guided by these
notions, Nolaset al [21] have shown that semiconducting Ge clathrates offer similar potential,
and reported a remarkably low thermal conductivity in Sr8Ga16Ge30. The structure of this
solid is based on the framework type-I Ge clathrates (Ge46), with all the ‘cages’ occupied by Sr
atoms, and a fraction of the Ge sites are occupied by Ga atoms (a framework atom substituting
for Ge). The guest Sr atoms (inside the cages) provide additional electrons to the electron
deficient Ga atoms, to form a Sr2+ and 2Ga− Zintl semiconducting compound. Likewise, the
germanium clathrate-I framework has been shown to be the parent for a whole series of Zintl
based compounds such as K8In6Ge40 [22], Ba8M8Ge38 (M = Zn, Cd), Ba8In16Ge38 [23],
Rb8Al 8Ge38 and Cs8Ga8Ge38 [24].

The objective of the present study is to theoretically determined the basic properties of
the ‘pure’ parent Ge framework clathrate materials including the vibrational spectrum which
is important for characterization of the materials. In future work, we will study the effect of
substitutional impurities and (caged) guest species. For both Ge46 (type-I) and Ge136 (type-II),
we have determined the energetics of the framework, their equations of state and structural
parameters, their electronic band-structure and their vibrational modes. We compare with the
experiments where possible, and we compare and contrast with silicon clathrates where data
is more plentiful. We report Raman and infrared (IR) vibrational modes, which can be used to
compare and interpret future Raman and IR experiments. The vibrational modes are also key
to understanding the thermal conductivity in these materials.

2. Computational methodology

The theoretical foundation of our calculations is LDA density functional theory (DFT) using
a planewave basis and a pseudopotential. The method has been extensively tested on a wide
variety of systems. The implementation we adopt here is particularly efficient. The calculations
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were performed using the Vienna ab-initio simulation program (VASP) developed at the
Institut für Theoretiche Physik of the Technische Universität Wien [25, 26] for large unit cells
such as these, and uses an ultrasoft pseudopotential to eliminate core electrons in calculation
[27, 28]. The electron exchange-correlation energy is approximated with the Ceperley–Alder
functional [29]. We applied similar methods in a previous study of Si clathrates (Si136) [13],
and calculated structural and vibrational results are consistent with experiments [6, 30]. The
effect of gradient corrections was examined in that work and were found to be minor, so we
neglect them in this work. The energy cut-off of the planewave basis for Ge is chosen as
10.23 Ryd, and Brillouin zone integration is performed over a 2× 2 × 2 Monkhorst–Pack
k-space grid.

Group theory is used to reduce the computation of the energy and forces during the structure
optimization. To determine the optimized clathrate structures, we choose a fixed volume of
the unit cell, then optimize the ionic positions through a conjugate gradient algorithm using
atomic forces. This process is repeated for several unit cell volumes from which an equation
of state and the global minimum energy is determined. Since the type-I and type-II clathrate
structures are cubic (see section 3), optimizing the external lattice (in this case, a single lattice
constant) is straight forward. The electronic states (band-structures) and vibrational modes
are evaluated at the minimum energy configuration.

The calculation of lattice vibrational dispersion relations requires the dynamical matrix
(D(Eq)), whereEq is is the phonon wavevector within the first Brillouin zone. Diagonalization
of the dynamical matrix give the eigenvalues (squared frequencies) and eigenvectors. The
calculation is performed in two steps. We start with a force free optimized unit cell withN

atoms per cell. In the first step, we determine the 3N × 3N 0-point force constant matrix
φ(Eq = 0) by finite displacements of atoms within the large single unit cell of the material. A
complete row of the matrix elements ofφ(Eq = 0) is determined from the forces generated on
each atom when a single atom is displacedU0 from its equilibrium position, and the force is
divided byU0. This procedure is exact in the harmonic approximation except for numerical
errors. For a general structure, 3N such displacements must be made to capture the complete
φ(Eq = 0) matrix. Symmetry dramatically reduces this number and this is exploited. The
symmetry unique displacements used for each of the two structures (clathrate-I and -II) will
be described in section 3. Since Raman and IR modes only couple to nearEq = 0 modes, this
procedure generates these modes and the second step (described next) needed to determine the
wavevector dependence is unnecessary for these modes.

In the second step, the dynamical matrix at non-zeroEq is obtained by introducing an extra
approximation. This approximation assumes that atoms separated by a distance greater than
third nearest neighbours (i.e. distances greater than 5 Å) have force constant matrix elements
that have fallen to zero in real space. This ‘distant force constant truncation’ assumption
allows us to obtain approximately the real space force constant matrix elements from the
φ(Eq = 0) force constant matrix. Then, from the approximate real space force constant matrix
we reconstruct an approximate matrix in reciprocal spaceφ(Eq). The transformation from real
space to reciprocal space is accomplished by performing the appropriate lattice/basis sum with
the appropriateEq dependent phase factors. Consequently, only the dynamical matrix at the
0 point (Eq = 0) is calculated in an ‘exact’ way, and vibrational modes at other wavevectors
are approximated since distant neighbour force constants are neglected. In diamond phase
Ge, this approximation effects the transverse acoustic (TA) modes most. The error due to this
truncation of the real space force constant matrix can be reduced by calculatingφ(Eq = 0) for
a larger (supercell) cell to increase the real space range before it is truncated. With current
workstations, a 2× 2 × 2 supercell calculation of Ge clathrates involves nearly 400 atoms
and it is computationally impractical for such a LDA planewave calculation, and offers little
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benefit. There is no error in the Raman and IR modes since they are computed in the first
step†.

The method just described assumes the harmonic approximation is valid and this needs to
be carefully checked in methods which use finite displacements. A displaced atom generates
forces and these forces are divided by the displacement magnitudeU0 to obtain a force constant.
Clearly the atoms must be carefully relaxed to their zero force positions for the procedure to
be accurate. Here we use a value ofU0 of 0.02 Å and find the frequencies change little when
we slightly vary this value. In addition, we perform force calculation with both +U0 and−U0

and average the two resulting force constant matrices. Any odd-order anharmonicity then
vanishes, leaving only fourth- or higher-order anharmonic errors.

Raman or IR techniques can probe the vibrational modes. The intensity of first-order
Raman scattering is proportional to the square of the change of polarization of the system. In
this study, we estimate the Raman scattering intensity based on a bond-polarizability model
(BPM) [31]. In the BPM, the change of polarization of the system is approximated by a sum of
the changes of all the individual bonds. Furthermore, the BPM describes the bond polarization
in terms of polarization expansion coefficients along the bond direction and normal to the bond.
Empirical fitting from experiments has been performed for simple (diamond) covalent systems
like C, Si and Ge with success [31, 32]. In our recent study of Si clathrates, we found those
parameters are not transferable to new geometries [13], and we modify them empirically‡.
The intensities (but not frequencies) should therefore be considered to be only qualitative. In
addition, the frequency-dependent polarizability is replaced by a constant polarizability, and
thus there can be no laser frequency dependence predicted for the spectra in the BPM that we
use here.

3. Results

3.1. Structure, equation of state and energetics

Type-I clathrates have thePm3̄n (No 223) space group. The 46 Ge atoms in its simple cubic
(SC) primitive unit cell are located at three distinct Wyckoff symmetry sites: 6c, 16i and
24k. The material is open since it is obtained by packing two ‘small’ 20-atom cages and six
‘large’ 24-atom cages together. The two non-framework symmetry sites, 2a and 6d, are the
centres of the ‘small cage’ (pentagonal dodecahedron) and the ‘large cage’ (tetrakaidecahedron)
respectively. These cage-centred sites are generally occupied with alkali or alkali-earth metal
atoms in synthesized clathrate materials. We study here guest free clathrates and focus on the
pure framework.

The face-centred cubic (FCC) type-II clathrates belong to the space groupFd3̄m (No 227).
This can be written in terms of its primitive cell as Ge34 (34 atoms per primitive unit cell) or
in terms of its conventional cubic cell as Ge136 (136 atoms per cubic cell). This structure is
obtained by packing eight ‘small’ 20-atom cages and sixteen ‘large’ 28-atom cages together in
the conventional unit cell. The framework of Ge136 has three Wyckoff sites which are 8a, 32e
and 96g, and the centres of the ‘small cage’ (pentagonal dodecahedron) and the ‘large cage’
(hexakaidecahedron) are 8b and 16c respectively. Stereo pictures of the clathrate structures
can be found in [7, 9].

† In reporting the Raman and IR modes in this work, we use the results computed exactly for theEq = 0 force constant
matrix, and not the approximate values obtained by determine the short-ranged real-space force constant matrix and
the transforming back to reciprocal space. If we use the approximate matrix at theEq = 0 point, a maximum error of
5 cm−1 is found.
‡ In this study, we useα1/αq = −3 andα25/αq = −0.5.
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In both type-I and -II, each Ge is tetrahedrally bonded (with no dangling bonds), and one
would expect the material to be a semiconductor. We first determine the optimized structural
parameters (table 1) and equation of state, EoS (table 2). The comparable experimental data is
provided when it is available [5, 6, 8]. The samples measured in these experiments contain guest
metal atoms inside the cages. We find that the LDA calculated lattice constants of Ge clathrates
are about 1.5% (type-I) and 2.3% (type-II) smaller that those measured in experiments. The
lattice constant of the Ge diamond phase calculated with the same approximations is 5.636 Å,
which is only 0.3% smaller than the experimental value of 5.652 Å. In a previous study of
Si [13] similar results were found (lattice constants about 0.6% too small), and the effects of
the generalized gradient approximation (GGA) were to expand the lattice about 1.5% over the
LDA results. Although this level of agreement is quite satisfactory and typical of the LDA, it
is curious the diamond phase has so little error while the clathrate phases have a larger error.
Two possible reasons come to mind. First the band-gap of diamond Ge is incorrectly predicted
in LDA (see below), which may manifest itself by enlarging the lattice slightly to give the
smaller error compared to clathrate. A second reason is that the experiments for Ge contain
alkali metals which may expand the lattice slightly, giving the appearance that our clathrate
calculation have a larger ‘error’.

Table 1. The LDA optimized structural parameters of the Ge clathrate framework. Experimental
results are from [5, 6, 8].

Lattice constant Fractional internal coordinates

Theory Exp Symmetry site Theory Exp

Ge46 10.50 Å 10.66 Å 6c ( 1
4 , 0, 1

2) etc
Clathrate-I 16i (xi , xi , xi ) etc xi = 0.1835 xi = 0.184

24k (0, yk, zk) etc yk = 0.3079,zk = 0.1170 yk = 0.313,zk = 0.120

Ge136 15.13 Å 15.48 Å 8a ( 1
8 , 1

8 , 1
8) etc

(or Ge34) 32e (xe, xe, xe) etc xe = 0.2170 xe = 0.2177
Clathrate-II 96g (xg, xg, zg) etc xg = 0.1825,zg = 0.3704 xg = 0.1822,zg = 0.3704

Table 2. The parameters of a Birch–Murnaghan equation of state obtained from a fit of the LDA
energy against volume curve. The framework was optimized at each volume. The parameterE0 is
the minimum energy (binding energy),V0 is the minimum energy volume,K is the bulk modulus,
andK ′ = dK/dP the volume derivative of the bulk modulus.

Phase E0 (eV/atom) V0 (Å3/atom) K (GPa) K ′

Diamond −5.172 (0.000) 22.38 (100%) 70.2 4.7
β-tin −4.986 (+0.186) 18.11 (81%) 80.1 4.7
Ge46 (I) −5.122 (+0.050) 25.21 (113%) 61.3 4.8
Ge136 (II) −5.128 (+0.044) 25.48 (114%) 61.9 4.8

The optimized values of internal coordinates are shown in table 1. We first discuss the
Ge46 structure. The Ge–Ge bond-angles we obtain range from 104.9◦ to 124.7◦. The ideal
tetrahedral bond-angle in the diamond phase is 109.5◦. At first sight, the fractional coordinates
appear to be in close agreement with the experimental data for K7.4Ge45 [5]. (The Ge46 material
is believed to have vacancies.) The agreement concerning Ge46 appears less satisfactory
when these results are translated into bond-lengths. We find four distinct Ge–Ge bond-length
which are 2.42 Å (bond-I), 2.43 Å (bond-II), 2.45 Å (bond-III) and 2.46 Å (bond-IV). The
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four experimental bond-lengths are 2.42 Å (bond-III), 2.43 Å (bond-I), 2.50 Å (bond-II), and
2.57 Å (bond-IV). Theory thus predicts a much smaller spread in bond-lengths (δd = 0.04 Å)
than does experiment (δd = 0.17 Å). We find this large difference to be somewhat alarming.
We have further examined this difference by comparing the energies we obtain for (i) our
optimized structure, and (ii) a structure with the experimental fractional coordinates given in
table 1. This comparison was performed at the experimental lattice constant of 10.66 Å. We
find an energy difference of 14.4 meV/atom (about 167 K in temperature units). This is a
relatively large energy cost, being approximately one third of the energy cost of forming the
clathrate phase over the diamond phase (see below). Theoretically then the wide range of
bond-length noted in the experiments is unlikely. This suggest that (i) guests greatly alter the
bond-lengths, (ii) vacancies or other defects exists at high concentrations altering the bond-
lengths, (iii) the Reitveld refinements are inaccurate in determining the bond-lengths, or (iv) the
LDA theoretical method is failing on this point. A final resolution of this point will have to
await further work.

The early work of Croset al [6] reported a lattice constant of 15.4 Å for NaxGe136

samples. However, no detailed experimental data of the internal coordinates for the Ge136

type framework was available until very recently [8]. Bobev and Sevov [8] synthesized
and characterized a fully-filled Ge clathrate, Cs8Na16Ge136. They found a slightly larger
lattice constant of 15.48 Å, and four distinct bond-lengths (2.4859 Å, 2.4881 Å, 2.4980 Å and
2.5033 Å). The spread in bond lengths isδd = 0.017 Å, much smaller than that of the data
described earlier for Ge46 clathrates. The experimental and theoretical structure parameters
are given in table 1. An LDA calculation shows that at the experimental lattice constant
(15.48 Å), the energy difference between the structure with the experimental coordinates and
the one with our optimized coordinates is negligibly small (1.3 meV/atom). Thus theory
and experiment give consistent structure parameters in type-II Ge clathrates. The four bond-
lengths found in our calculation are 2.415 Å, 2.4357 Å, 2.4362 Å and 2.461 Å, which gives
a δd = 0.046 Å, a value similar to that obtained theoretically for Ge46 and larger than the
experimental value.

We compute the EoS by fitting our calculated optimized energy at several different volumes
to the Birch–Murnaghan equation. The equation for the energy against volume is [33]

E(V ) = E0 +
9

8
K V0((V0/V )2/3 − 1)2

(
1 +

(
4 − K ′

2

)(
1 −

(
V0

V

)2/3))
.

and the parameters listed in table 2. There are four parameters;E0 is the minimum energy
(binding energy compared to free atoms),V0 is the minimum energy volume,K is the bulk
modulus, andK ′ = dK/dP the volume derivative of the bulk modulus. Plots of the fitted
EoS curves (atT = 0 K) of Ge clathrates, along with the ground state diamond phase and
metallicβ-tin phase, are shown in figure 1, where indeed diamond is the ground state. We
have included the high-pressureβ-tin phase which experimentally diamond transforms into
near 8–10 GPa [34]. It is reduced in volume by approximately 19% and its energy is higher
by about 0.186 eV/atom. The predicted phase transition pressure to theβ-Sn phase 7.5 GPa.

The EoS of clathrate-I and -II are very close to each other. Compared with the diamond
phase, their volumes are expanded by 13–14%. Their energies are close to diamond, being
only 40–50 meV/atom higher. Since 50 meV is only 580 K in temperature units, the energy
difference between Ge clathrates and Ge diamond is regarded as very small. The corresponding
energy difference between diamond and clathrate phases in silicon was found to be about
70 meV/atom [13].

Obviously applying pressure to the diamond phase will not produce a phase transition to
the expanded clathrate phases. As shown in figure 2, the free energy (E + PV , or Gibbs free
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Figure 1. Equation of states (energy against volume) of four germanium phases: diamond,β-tin,
clathrate-I (Ge46) and clathrate-II (Ge136 or Ge34). The LDA calculated data are fitted with the
Birch–Murnaghan equation. Table 1 gives the parameters. In contrast to the high-pressure phases
of Ge (such asβ-Sn), clathrate phases are expanded phases whose EoS curves are located on the
right of of the diamond phase.
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Figure 2. Free energyE +pV , of four germanium phases. Possible phase transitions are: diamond
→ β-tin at 7.5 GPa (exp 8–10 GPa); diamond→ clathrates at about−2.2 to−2.4 GPa; clathrates
→ β-tin at 3.2 GPa.

energy atT = 0 K) of the diamond phase and clathrate phases are equal only for negative
pressure (about−2.4 GPa for type-I and−2.2 GPa for type-II). However, phase transitions
from clathrates toβ-Sn are possible, and we find a critical pressure of about 3.2 GPa for both
types of Ge clathrates. Other transitions may also occur such as that to the ST-12 phase.
Early experiments by Bundy showed that Si clathrates ‘collapsed’ under pressure [35] to an
undetermined, but complex, structure.
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Figure 3. Electronic band-structure of: (a) Ge46 (clathrate-I); (b) Ge136 (clathrate-II); near the
band-gap region. In units of 2π/a, thek-points correspond to (a)L = ( 1

2 , 1
2 , 1

2), 0 = (0, 0, 0),
X = ( 1

2 , 0, 0), andM = ( 1
2 , 1

2 , 0); (b)L = ( 1
2 , 1

2 , 1
2), 0 = (0, 0, 0), X = (1, 0, 0), W = (1, 1

2 , 0)

andK = ( 3
2 , 3

2 , 0). Within the LDA, band-gaps are 0 eV (diamond, not shown), 1.21 eV (clathrate-
I) and 0.75 eV (clathrate-II). Since the experimental band-gap of Ge diamond is 0.7 eV, we estimate
that the LDA underestimates the size of gap by about 0.7 eV in the sp3 bonded germanium solids.
Using this estimation, the estimated gaps in Ge clathrates are 1.9 eV (type-I) and 1.45 eV (type-II).

3.2. Electronic band-structure

The LDA band-structure of diamond phase Ge leads to the well know failure of LDA—
it predicts no band-gap, while of course, experimentally, diamond phase Ge is an indirect
semiconductor of band-gap 0.7 eV. We performed the calculation for diamond phase Ge and
find the top of valence and bottom of conduction band overlapping at the0-point. In other
words, LDA underestimates band-gap in Ge diamond by at least 0.7 eV. To approximately
correct for this shortcoming, we will add 0.7 eV (accompanied by a cautionary statement) to
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our band-gap to obtain estimates of the true band-gaps for Ge clathrates. This assumes that the
errors are relatively constant from one structure to the next—a reasonable assumption since
the bonding is similar.

In figures 3(a) and (b), we show our calculated band-structure of Ge46 (type-I) and Ge136

(type-II) respectively. As in a previous study of Si clathrates [13], the electronic bands in Ge
clathrates are fairly flat. We find band-gaps of 1.21 eV and 0.75 eV for clathrate-I and -II
respectively. Adding the approximate 0.7 eV correction described earlier, we obtain estimates
of 1.9 eV and 1.45 eV. For comparison, using the same theoretical technique for Si gives an
estimate of 1.9 eV for both clathrate-I and -II [13]. The percentage increase in Ge clathrates
is hence a bit larger.

The precisek-point to k-point transition of the minimum energy gap cannot accurately
be determined because the bands are fairly flat, and small geometric changes and errors in
the LDA (of GGA) may shuffle the ordering. In Ge46 (figure 3(a)), we find three distinct
valence band maxima that are nearly degenerate. In addition, there are three local minima in
the conduction bands. Within this particular LDA and structural model, the smallest energy
gap is 1.21 eV and goes betweenk-points points that both lie along the0 to X line. Since
thek-point separation is small and the bands flat (particularly in the valence band region), we
feel it best to conclude that Ge46 has a ‘quasi-direct’ band gap. The situation is clearer for
Ge136 shown in figure 3(b). The FCC clathrate-II within the LDA is clearly a direct band-gap
semiconductor of 0.75 eV at theL-point.

We compute the valence band electronic density of states of the three phase of Ge:
diamond, clathrate-I and clathrate-II. The results are shown in figures 4(a), (b) and (c)
respectively. The top of the valence bands is at 0 eV. We first observe that the valence band
width for the clathrate phases is approximately 1 eV narrower than that for the diamond phase.
Each density of states (DOS) shows three major structures which can be assigned (roughly)
to an s-region, and sp-hybrid-region, and a p-region (from left to right) in the valence band
region. The diamond phase clearly separates these phases, while the clathrate phases tend
to meld these structures together. Meĺinon et al [14] have described similar effects in the Si
clathrate-II, and convincingly attribute these changes in the valence band DOS to the high
density of five-fold rings. In a self-consistent planewave calculation (such as performed here)
it is impossible to give a value of the valence band maximum on anabsolutescale (e.g. to
compare the valence band maximum of one phase relative to another or to vacuum). However,
using a non-self-consistent tight-binding or local-orbital Harris functional, the valence band
maximum can be placed on an absolute scale. We have done this using a local orbital Harris
functional technique, and find that the valence band maximum moves down in energy by
∼2.1 eV in comparison with that of the diamond Ge phase [36]. Part of the reduction of the
valence band width is due to the retreat of the band maximum, which also has the consequence
of opening the band-gap. The narrowing in the width of valence bands by about 1 eV was also
found in previous study of Si clathrates [13].

3.3. Lattice vibration and Raman spectra

We use symmetry to reduce the number of finite displacements needed to obtain the force
constant matrix and the vibrational spectrum. In Ge46, which hasPm3̄n symmetry, only six
independent displacements need to be made. There must be a single displacement calculation
of one atom at a 16i site, two orthogonal displacements for a single atom at a 6c site, and three
orthogonal displacement calculations for a single atom at a 24k site. Group theory generates
the remaining(3 × 46) − 6 columns of the force constant (φ(Eq = 0)) matrix. Similarly, in
Ge34, only four displacements need be made instead of 102(=3 × 34) calculations.
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Figure 4. The total valence band electronic density of states (EDOS) of: (a) Ge diamond;
(b) Ge46 (clathrate-I); and (c) Ge136 (clathrate-II). The valence band width for the clathrate phases
is approximately 1 eV narrower than that for the diamond phase. The diamond phase clearly
separates three regions (from left to right: s-region, sp-hybrid-region and a p-region), while the
clathrate phases tend to meld these structures together. Note that the clathrates introduce a gap
between the nominal sp-hybrid-region and the p-region.

The phonon dispersion curves for Ge clathrate-I and -II frameworks are shown in
figures 5(a) and (b), and the phonon densities of states are in figure 6. Since these framework
materials have large unit cells, the small Brillouin zone gives narrow bands. For both types
of clathrates, there exist two high density of states regions—one is just above the acoustic
branches (approximately from 50 cm−1 to 100 cm−1), and the other is at the top of optical
bands (approximately from 260 cm−1 to 285 cm−1). As mentioned in section 2, the lowest TA
modes (∼0–30 cm−1) are not as accurate as the other modes. The optical bands are generally
flat, reminiscent of ‘zone folding’. As a result, most optical modes, except a few within
100–150 cm−1 region, have very small group velocities (dω(Eq)/dEq). According to semi-
classical heat transport theory [37], phonons with a small velocity transfer heat ineffectively.
This suggests that even pure (empty cages) clathrates should have lower thermal conductivity
compared with the diamond phase. Of course, such a comparison assumes identical phonon
scattering mechanisms.

Optical modes are located from about 60 cm−1 up to about 285 cm−1 in both clathrate
phases. For comparison, the highest optical mode in Ge diamond is 304 cm−1 (exp), and we
calculate the frequency of Ge diamond to be 290 cm−1. Thus our calculation shifts the highest
mode frequency downward about 5 cm−1 compared to Ge diamond phase. In Si clathrates, a
30 cm−1 shift down from diamond phase in the highest optical modes was found [13, 30, 38].

Optical spectroscopy measurements, such as Raman or IR scattering, probe0 point
(Eq = 0) phonon modes. To link our theoretical results with possible future experiments,
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Table 3. 0 point (Eq = 0) phonon modes of Ge46 (clathrate-I): frequencies and symmetry.

Frequency (cm−1) Symmetry Raman active IR active

61.5 T2g X
62.8 T1g

67.1 Eg X
68.7 T1u X
71.3 T2u

74.4 T1g

77.3 T2g X
78.5 A2u

78.8 A2g

81.8 Eu

83.3 T1g

88.9 T1u X
89.0 T2g X
89.2 T1g

89.3 T2u

91.4 Eu

92.8 T1u X
131.5 Eg X
138.0 T2u

138.6 A2g

169.8 Eg X
172.2 T1u X
175.7 T2g X
185.7 T2u

189.1 A1g X
190.1 A1u

206.2 T1g

211.7 T2u

215.1 T1u X
218.1 A2g

222.8 A2u

234.9 T1u X
235.2 T2g X
238.2 Eg X
240.5 T1g

247.4 A1g X
257.7 T2u

263.4 T1u X
268.3 Eg X
270.7 T2u

272.2 T1g

272.2 T2g X
272.5 T1u X
272.6 T2u

272.7 Eu
274.6 T1u X
275.0 Eu
275.5 Eg X
276.3 T2g X
276.9 A1u

277.8 T1g

278.2 T2g X
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Table 3. (Continued)

Frequency (cm−1) Symmetry Raman active IR active

278.7 Eg X
279.0 A2g

281.6 T2u

282.4 A1g X
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(a) Phonon dispersion of Ge46

clathrate−I: simple cubic
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(b) Phonon dispersion of Ge136

clathrate−II: face−centered cubic
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Figure 5. Phonon dispersion relations of Ge46 (clathrate-I) and Ge136 (clathrate-II), calculated
approximately from the force constant matrixφ at the0 point. The acoustic modes are located
below 60 cm−1.

we examine the frequencies and symmetry of Raman active or IR active modes [39] and the
calculated results are listed in the tables 3 (Ge46) and 4 (Ge136). The mode frequencies listed are
obtained directly from the finite displacement calculation, without the additional assumption of
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Figure 6. The total vibrational density of states (VDOS) of: (a) Ge46 (clathrate-I); and (b) Ge136
(clathrate-II). For both types of clathrates, there exist two high-density of states regions—one is
just above the acoustic branches (approximately from 60 cm−1 to 100 cm−1), and the other is at
the top of the optical bands (approximately from 260 cm−1 to 285 cm−1).

the distant force constant truncation approximation used to obtain the dispersion curves. Due
to the degeneracy from structural symmetry, the 138 (3×46)0-point modes in Ge46 have only
57 distinctive frequencies (3A1g +4A2g +7Eg +8T1g +8T2g +2A1u +2A2u +4Eu +10T1u +9T2u).
Similarly, there are 42 frequencies (3A1g + 1A2g + 4Eg + 5T1g + 8T2g + 1A1u + 3A2u + 4Eu

+ 8T1u + 5T2u) for the 102 (3× 34)0 phonon modes in Ge clathrate-II (Ge34). Group theory
[39] shows that there are 18 Raman allowed modes (3A1g + 7Eg + 8T2g), and 9 IR allowed
modes (9T1u, not including the T1u zero-frequency translational modes) in Ge46 clathrate-I,
and 15 Raman active modes (3A1g + 4Eg + 8T2g) and 7 IR active modes (7T1u, not including
the T1u zero-frequency translational modes) in Ge34 clathrate-II.

The number of experimentally observed Raman or IR frequencies may be less than the
number of active modes predicted by group theory since some modes have too small a scattering
cross sections to be detected. To have a sense as to which modes we have calculated are ‘invisi-
ble’, we adopt a simple, empirical bond-polarizability model to estimate the Raman intensities
(see section 2 for details). However, we emphasize that the intensity calculation is not quan-
titative. Previous work on Si clathrates has shown that the parameters for diamond phase are
not transferable to clathrate phases. The parameters used in this study are chosen empirically
(see second footnote on page 6132) using the rule found for Si [13]. We have calculated two
types of polarization spectra:Ixx for parallel polarization (VV) andIxy for crossed polarization
(HV). The results are averaged over 4π solid angle to represent powder-like samples.

As shown in figure 7(a), the Raman spectra of Ge46 have fivemajor peaks located at
67.1 cm−1(Eg), 89.0 cm−1(T2g), 189.1 cm−1(A1g), 268.3 cm−1(Eg) and 278.2 cm−1(T2g).
Our calculated VV and HV spectra using the BPM confirm both Eg and T2g modes are
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Table 4. 0 point (Eq = 0) phonon modes of Ge136 (clathrate-II): frequencies and symmetry.

Frequency (cm−1) Symmetry Raman active IR active

54.1 T2g X
71.6 T1g

74.0 Eg X
79.1 T1u X
80.9 T2u

81.4 T1g

84.0 T2g X
87.6 Eu

90.1 T1g

90.6 T2u

92.7 A2g

96.7 T1u X
153.6 T1u X
156.8 T2g X
162.0 A2u

169.6 Eu
180.0 A1g X
187.5 T2g X
204.7 Eg X
210.3 T2u

218.1 T1u X
225.3 A2u

226.7 A1g X
233.8 T2g X
236.0 A2u

243.2 T1g

248.0 T1u X
261.3 Eu
268.2 T2u

269.3 T1u X
270.0 A1g X
271.4 Eu
273.0 Eg X
273.6 T2g X
274.8 T1u X
275.8 T2g X
278.9 T1g

281.4 T2g X
281.5 A1u

282.9 Eg X
284.4 T2u

polarization insensitive, while A1g modes are active only in parallel polarization. The VV
spectra of Ge136 shown in figure 7(b) also shows fivemajor peaks. Each of the first four peaks
correspond to the individual Raman modes (54.1 cm−1(T2g), 74.0 cm−1(Eg), 156.8 cm−1(T2g)

and 180.0 cm−1(A1g)), and the last peak is a combination of two modes (273.0 cm−1(Eg) and
275.8 cm−1(T2g)). There are also threeminor peaks with frequencies of 84.0 cm−1(T2g),
226.7 cm−1(A1g) and 282.9 cm−1(Eg). Again, A1g modes are only active in the VV spectra.

Our previous calculation of Raman frequencies of (pure) Si136 are within a few per cent
of reported Raman measurements performed with low Na concentration in NaxSi136 samples
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Figure 7. The calculated Raman spectra of (a) Ge46 (clathrate-I); and (b) Ge136 (clathrate-II). The
relative intensity of first-order Raman scattering is computed using a bond-polarizability model,
and the intensity is averaged over 4π solid angles appropriate to powder samples. The VV label is
for parallel polarization, and the HV is the label for cross polarization.
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[13, 30]. At the same time, a larger difference is found between the calculation of the Si46

phonon spectra and Raman experiments on high metal concentration Si46 samples, such as
(Na, Ba)xSi46, Na8Si46 and K7Si46 [40]. Apparently, the metal–framework interaction is
important for lattice vibration in these high metal concentration clathrates, and this likely
applies to Ge46 as well.

4. Conclusions

We have determined the energetics, electronic structure, and vibrational modes of two
germanium expanded phases—clathrate-I and clathrate-II. Comparing with the (ground state)
diamond phase, the energies of Ge clathrates is only 0.04–0.05 eV/atom higher, while their
volumes expand about 13–14%. Both type-I and type-II Ge clathrates are semiconductors,
with LDA gaps of 1.21 eV and 0.75 eV respectively, and the true gaps (estimated correction of
the LDA) are likely near 2 eV. The phonon dispersion curves show that the acoustic modes are
limited to less than 60 cm−1 and most optical modes have small group velocity. We investigate
phonon mode for IR and Raman experiments, and calculate the Raman spectra using a bond-
polarizability model. We believe our results will be useful in interpreting future Raman or IR
experiments and are obtained without any empirical fitting of the frequencies.
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